Abstract

Abstract An X-ray diffraction study is made in order to determine the nature of stacking faults present in vapour-grown cubic ZnS crystals, as well as in cubic crystals obtained by solid-state transformation from the 2H phase by thermal annealing. For this the point intensity distribution along the 10.L reciprocal lattice row of both kinds of disordered 3C crystals was recorded on a single-crystal diffractometer. The observed intensity profiles are found to be asymmetrically broadened and do not show any peak shifts, indicating that stacking faults present in both as-grown and annealed crystals are predominantly twin faults distributed randomly. The experimentally obtained intensity profiles are compared with those calculated theoretically for a random distribution of twin faults. The experimental results indicate (i) that the disordered 3C structures result by solid-state transformation of the 2H phase during the cooling of the growth furnace (ii) that they contain a random distribution of twin or growth faults and (iii) that the 2H-3C transformation in ZnS occurs by the non-random nucleation of deformation faults, occurring preferentially at two layer separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.