Abstract

Here, we present new measurements of the phase stability and lattice compressibility of gaspeite (NiCO3) to 50 GPa. Our study is motivated by our interest in understanding high-pressure carbonate behavior. While carbonates have been extensively studied under high-pressure and -temperature conditions, they exhibit different behaviors. We have studied the high-pressure behavior of gaspeite using diamond anvil cells, Raman spectroscopy, and X-ray diffraction. Our experimental data show that gaspeite maintains the calcite structure up to 50 GPa, reverts to its zero-pressure volume on decompression with little hysteresis, and can be fit by a 3rd-order Birch–Murnaghan equation of state. We calculate a bulk modulus (K0T) of 136(4) GPa and a K′ value of 4.6(3). Additionally, we have determined the isothermal Gruneisen parameter for each of the traced Raman modes. These results contribute to growing experimental evidence that suggests some carbonates can be stable at lower mantle conditions. Ultimately, information in this dataset may facilitate predictions of mixing energetics amongst the calcite-structured carbonates, and therefore help determine the role of carbonates in the transition metal geochemistry of the deep Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.