Abstract

Phenazines are widely distributed in the environment and play an important role in various biological processes to facilitate microbial metabolism and electron transfer. In this work, an efficient and reliable spectroelectrochemical method is developed to quantitatively detect 1-hydroxyphenazine (1-OHPZ), a representative phenazine, and explore its redox characteristics. This approach is based on the sensitive absorption change of 1-OHPZ in response to its changes under redox state in rapid electrochemical reduction. The redox reaction of 1-OHPZ in aqueous solution is a proton-coupled electron transfer process, with a reversible one-step 2e−/2H+ transfer reaction. This spectroelectrochemical approach exhibits good linear response covering two magnitudes to 1-OHPZ with a detection limit of 0.48µM, and is successfully applied to detect 1-OHPZ from a mixture of phenazines produced by Pseudomonas aeruginosa cultures. This method might also be applicable in exploring the abundance and redox processes of a wide range of other redox-active molecules in natural and engineered environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call