Abstract

This study focuses on the application of the concept of circular economy, with the creation of added-value marketable products and energy from organic waste while minimizing environmental impacts. Within this purpose, an urban biorefinery technology chain has been developed at pilot scale in the territorial context of the Treviso municipality (northeast Italy) for the production of biopolymers (polyhydroxyalkanoates, PHAs) and biogas from waste of urban origin. The piloting system (100–380 L) comprised the following units: a) acidogenic fermentation of the organic fraction of municipal solid waste (OFMSW) and biological sludge; b) two solid/liquid separation steps consisting of a coaxial centrifuge and a tubular membrane (0.2 μm porosity); c) a Sequencing Batch Reactor (SBR) for aerobic PHA-storing biomass production; d) aerobic fed-batch PHA accumulation reactor and e) Anaerobic co-digestion (ACoD). The thermal pre-treatment (72 °C, 48 h) of the feedstock enhanced the solubilization of the organic matter, which was converted into volatile fatty acids (VFAs) in batch mode under mesophilic fermentation conditions (37 °C). The VFA content increased up to 30 ± 3 g COD/L (overall yield 0.65 ± 0.04 g CODVFA/g VS(0)), with high CODVFA/CODSOL (0.86 ± 0.05). The high CODVFA/CODSOL ratio enhanced the PHA-storing biomass selection in the SBR by limiting the growth of the non-storing microbial population. Under fully aerobic feast-famine regime, the selection reactor was continuously operated for 6 months at an average organic loading rate (OLR) of 4.4 ± 0.6 g COD/L d and hydraulic retention time (HRT) of 1 day (equal to SRT). The ACoD process (HRT 15 days, OLR 3.0–3.5 kg VS/m3 d) allowed to recover the residual solid-rich overflows generated by the two solid/liquid separation units with the production of biogas (SGP 0.44–0.51 m3/kg VS) and digestate. An overall yield of 7.6% wt PHA/VS(0) has been estimated from the mass balance. In addition, a preliminary insight into potential social acceptance and barriers regarding organic waste-derived products was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.