Abstract
The Discrete Element Method (DEM) has been employed in recent years to simulate flexible protection structures undergoing dynamic loading due to its inherent aptitude for dealing with inertial effects and large deformations. The individual structural elements are discretized with an arbitrary number of discrete elements, connected by spring-like remote interactions. In this work, we implement this approach using the parallel bond contact model and compare the numerical results at different discretization intervals with the analytical solutions of classical beam theory. Successively, we use the same model to simulate the punching test of a steel wire mesh and quantify the influence of a different number of elements on the macroscopic response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.