Abstract

The paper presents a numerical procedure for kinematic limit analysis of Mindlin plate governed by von Mises criterion. The cell-based smoothed discrete shear gap method (CS-DSG3) is combined with a second-order cone optimization programming (SOCP) for determining the upper bound limit load of the Mindlin plates. The limit analysis problem of Mindlin plates is formulated by minimizing the dissipation power subjected to a set of constraints of boundary conditions and unitary external work. This minimization problem is then transformed into an explicit form suitable for the solution using the SOCP. The numerical results of some benchmark problems show that the proposal procedure can provide the reliable upper bound collapse multipliers for the Mindlin plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.