Abstract

We use current observations on the number statistics of gravitationally lensed optical arcs toward galaxy clusters to derive an upper limit on the cosmological mass density of the universe. The gravitational lensing statistics from foreground clusters combine properties of both cluster evolution, which is sensitive to the matter density, and volume change, which is sensitive to the cosmological constant. The uncertainties associated with the predicted number of lensing events, however, currently do not allow one to distinguish between flat and open cosmological models with and without a cosmological constant. Still, after accounting for known errors, and assuming that clusters in general have dark matter core radii of the order ~35 h-1 kpc, we find that the cosmological mass density, Ωm, is less than 0.56 at the 95% confidence. Such a dark matter core radius is consistent with cluster potentials determined recently by detailed numerical inversions of strong and weak lensing imaging data. If no core radius is present, the upper limit on Ωmincreases to 0.62 (95% confidence level). The estimated upper limit on Ωm is consistent with various cosmological probes that suggest a low matter density for the universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.