Abstract
We deal with zero-delay source coding of a vector Gaussian autoregressive (AR) source subject to an average mean squared error (MSE) fidelity criterion. Toward this end, we consider the nonanticipative rate distortion function (NRDF) which is a lower bound to the causal and zero-delay rate distortion function (RDF). We use the realization scheme with feedback proposed in [1] to model the corresponding optimal “test-channel” of the NRDF, when considering vector Gaussian AR(1) sources subject to an average MSE distortion. We give conditions on the vector Gaussian AR(1) source to ensure asymptotic stationarity of the realization scheme (bounded performance). Then, we encode the vector innovations due to Kalman filtering via lattice quantization with subtractive dither and memoryless entropy coding. This coding scheme provides a tight upper bound to the zero-delay Gaussian RDF. We extend this result to vector Gaussian AR sources of any finite order. Further, we show that for infinite dimensional vector Gaussian AR sources of any finite order, the NRDF coincides with the zero-delay RDF. Our theoretical framework is corroborated with a simulation example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.