Abstract

This article presents an a priori upper bound estimate for the steady-state temperature distribution in a body with a temperature-dependent thermal conductivity. The discussion is carried out assuming linear boundary conditions (Newton law of cooling) and a piecewise constant thermal conductivity (when regarded as a function of the temperature). These estimates consist of a powerful tool that may circumvent an expensive numerical simulation of a nonlinear heat transfer problem, whenever it suffices to know the highest temperature value. In these cases the methodology proposed in this work is more effective than the usual approximations that assume thermal conductivities and heat sources as constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.