Abstract
AbstractWe reduce the upper bound for the bond percolation threshold of the cubic lattice from 0.447 792 to 0.347 297. The bound is obtained by a growth process approach which views the open cluster of a bond percolation model as a dynamic process. A three-dimensional dynamic process on the cubic lattice is constructed and then projected onto a carefully chosen plane to obtain a two-dimensional dynamic process on a triangular lattice. We compare the bond percolation models on the cubic lattice and their projections, and demonstrate that the bond percolation threshold of the cubic lattice is no greater than that of the triangular lattice. Applying the approach to the body-centered cubic lattice yields an upper bound of 0.292 893 for its bond percolation threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.