Abstract

Consider a face-to-face parallelohedral tiling of Rd and a (d−k)-dimensional face F of the tiling. We prove that the valence of F (i.e. the number of tiles containing F as a face) is not greater than 2k. If the tiling is affinely equivalent to a Voronoi tiling for some lattice (the so called Voronoi case), this gives a well-known upper bound for the number of vertices of a Delaunay k-cell. Yet we emphasize that such an affine equivalence is not assumed in the proof.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.