Abstract

Tower crane is the core construction facility in the high-rise building construction sites. Proper selection and location of construction tower cranes not only can affect the expenses but also it can have impact on the material handling process of building construction. Tower crane selection and layout problem (TCSLP) is a type of construction site layout problem, which is considered as an NP-hard problem. In consequence, researchers have extensively used metaheuristics for their solution. The Sine Cosine Algorithm (SCA) is a newly developed metaheuristic which performs well for TCSLP, however, efficient use of this algorithm requires additional considerations. For this purpose, the present paper studies an upgraded sine cosine algorithm (USCA) that employs a harmony search based operator to improve the exploration and deal with variable constraints simultaneously and uses an archive to save the best solutions. Subsequently, the upgraded sine cosine algorithm is employed to optimize the locations to find the best tower crane layout. Several benchmark functions are studied to evaluate the performance of the USCA. A comparative study indicates that the USCA performs quite well in comparison to other recently developed metaheuristic algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.