Abstract

A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities. Benefiting from the nanoscale, high hardness, and melting point of SiC, SiC/PVDF-HFP with highly uniform microstructure was obtained. This polarization caused by barrier penetration was significantly restrained. Due to the Si-F bond between SiC and PVDF-HFP, the structural stability has been obviously enhanced, which could suppress the growth of lithium (Li) dendrite. Furthermore, some 3D reticulated Si nanowires are found on the surface of Li anode, which also greatly inhibit Li dendrites and result in irregular flakes of Li metal. Especially, the shrinkage of 6% SiC/PVDF-HFP at 150 °C is only 5%, which is notably lower than those of PVDF-HFP and Celgard2500. The commercial LiFePO4 cell assembled with 6% SiC/PVDF-HFP possesses a specific capacity of 157.8 mA h g−1 and coulomb efficiency of 98% at 80 °C. In addition, the tensile strength and modulus of 6% SiC/PVDF-HFP could reach 14.6 and 562 MPa, respectively. And a small deformation (1000 nm) and strong deformation recovery are obtained under a high additional load (2.3 mN). Compared with PVDF-HFP and Celgard2500, the symmetric Li cell assembled with 6% SiC/PVDF-HFP has not polarized after 900 cycles due to its excellent mechanical stabilities. This strategy provides a feasible solution for the composite separator of high-safety batteries with a high temperature and impact resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.