Abstract

With minimal costs and travel constraints for athletes, the “living low-training high” (LLTH) approach is becoming an important intervention for modern sport. The popularity of the LLTH model of altitude training is also associated with the fact that it only causes a slight disturbance to athletes' usual daily routine, allowing them to maintain their regular lifestyle in their home environment. In this perspective article, we discuss the evolving boundaries of the LLTH paradigm and its practical applications for athletes. Passive modalities include intermittent hypoxic exposure at rest (IHE) and Ischemic preconditioning (IPC). Active modalities use either local [blood flow restricted (BFR) exercise] and/or systemic hypoxia [continuous low-intensity training in hypoxia (CHT), interval hypoxic training (IHT), repeated-sprint training in hypoxia (RSH), sprint interval training in hypoxia (SIH) and resistance training in hypoxia (RTH)]. A combination of hypoxic methods targeting different attributes also represents an attractive solution. In conclusion, a growing number of LLTH altitude training methods exists that include the application of systemic and local hypoxia stimuli, or a combination of both, for performance enhancement in many disciplines.

Highlights

  • Individual- or team-sport athletes are constantly looking for training innovation to gain a competitive edge

  • Altitude/hypoxic training is often viewed as the practice adopted by athletes who live and train for several weeks at moderate natural altitude (1,800–2,500 m) in the lead up to competition, termed “living high-training high” (LHTH) (Millet et al, 2010)

  • The popularity of the LLTH model of altitude training is associated with the fact that it only causes a slight disturbance to athletes’ usual daily routine, allowing them to maintain their regular lifestyle in their home environment (McLean et al, 2014)

Read more

Summary

INTRODUCTION

Individual- or team-sport athletes are constantly looking for training innovation to gain a competitive edge. The technological development of new tools that either decrease the atmospheric pressure in the room (e.g., hypobaric chambers) or reduce the fraction of O2 in the inspired air (FiO2) by diluting it with extra nitrogen or filtering out O2 (e.g., altitude tents, hypoxicator machines) has prompted renewed interest in LLTH interventions (Wilber, 2007). In this perspective article, we first discuss the evolving boundaries of the LLTH paradigm and its practical applications for athletes by providing an updated panorama of available methods (Figure 1) and we highlight areas for future research

PASSIVE MODALITIES
ACTIVE MODALITIES
Blood Flow Restriction
Submaximal Exercise
Maximal Exercise
COMBINATION OF VARIOUS METHODS
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.