Abstract

We explore the constraints on the parameter space of a Randall-Sundrum warped geometry scenario, where a radion field arises out of the attempt to stabilise the radius of the extra compact spacelike dimension, using the most recent data from higgs searches at the Large Hadron Collider (LHC) and the Tevatron. We calculate contributions from both the scalar mass eigenstates arising from radion-higgs kinetic mixing in all important search channels. The most important channel to be affected is the decay via WW(*),wherenoinvariantmasspeakcandiscernthetwodistinctphysicalstates. Improving upon the previous studies, we perform a full analysis in the WW(*) channel, taking into account the effect of various cuts and interference when the two scalar are closely spaced. We examine both cases where the experimentally discovered scalar is either ‘higgs-like’ or ‘radion-like’. The implications of a relatively massive scalar decaying into a pair of 125 GeV scalars is also included. Based on a global analysis of the current data, including not only a single 125 GeV scalar but also another one with mass over the range 110 to 600 GeV, we obtain the up-to-date exclusion contours in the parameter space. Side by side, regions agreeing with the data within 68% and 95% confidence level based on a χ2-minimisation procedure, are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.