Abstract
BackgroundPathological examination combined with tumor markers has become a standard for the diagnosis of intracranial germ cell tumors (ICGCTs), but the current concept of ‘secreting germ cell tumors’ and three empirically highly specific diagnostic criteria (β-hCG ≥ 50 IU/L or αFP ≥ 10 ng/mL; β-hCG ≥ 100 IU/L or αFP ≥ 50 ng/mL; β-hCG > 50 IU/L or αFP > 25 ng/mL) are not based upon pathology examination or CSF cytology. Further investigation is needed to re-evaluate their value.MethodsA multidisciplinary diagnostic team was created. Valid β-hCG/αFP data were collected from cases of ICGCTs confirmed by pathology and CSF cytology (n = 58) between 1991 and 2012, and from suspected ICGCTs cases (n = 17) between 2011 and 2012 as controls [Langerhans cell histiocytosis (LCH), n = 12; and other intracranial tumor (ICT), n = 5]. The cut-off points for β-hCG and αFP were calculated using receiver operating characteristic (ROC) curves.ResultsThis study clarifies the relative rationality of one criteria (β-hCG > 50 IU/L and αFP > 25 ng/mL); confirms new β-hCG diagnostic cut-off points: CSF β-hCG ≥ 8.2 IU/L and serum β-hCG ≥ 2.5 IU/L (sensitivity of 47 and 34 %, respectively, specificity of 100 %, both; P < 0.05); and empirically adjusts the criteria for αFP to ≥ 3.8 ng/mL in CSF and to ≥ 25 ng/mL in serum. The total diagnostic sensitivity for ICGCTs finally increased from 34.6 to 65.4 % (P < 0.05, diagnostic value of CSF β-hCG exceeds 90 %). Subtype diagnosis improved with αFP in 16.7 % of non-geminomatous germ cell tumor cases.ConclusionNew evidence-based criteria of β-hCG and αFP can help improving early and formal diagnosis of ICGCTs, and is of great clinical significance.
Highlights
Pathological examination combined with tumor markers has become a standard for the diagnosis of intracranial germ cell tumors (ICGCTs), but the current concept of ‘secreting germ cell tumors’ and three empirically highly specific diagnostic criteria (β-hCG ≥ 50 IU/L or αFP ≥ 10 ng/mL; β subunit of human chorionic gonadotropin (β-hCG) ≥ 100 IU/L or αFP ≥ 50 ng/mL; β-hCG > 50 IU/L or αFP > 25 ng/mL) are not based upon pathology examination or cerebrospinal fluid (CSF) cytology
It was found that certain ICGCTs are capable of secreting tumor markers such as the β subunit of human chorionic gonadotropin (β-hCG) and/ or α-fetoprotein
These criteria fail to present the meaning of differential diagnoses among other suspected intracranial lesions located in classical sites of ICGCTs
Summary
Pathological examination combined with tumor markers has become a standard for the diagnosis of intracranial germ cell tumors (ICGCTs), but the current concept of ‘secreting germ cell tumors’ and three empirically highly specific diagnostic criteria (β-hCG ≥ 50 IU/L or αFP ≥ 10 ng/mL; β-hCG ≥ 100 IU/L or αFP ≥ 50 ng/mL; β-hCG > 50 IU/L or αFP > 25 ng/mL) are not based upon pathology examination or CSF cytology. No criteria have been agreed upon these levels, but three criteria are used for diagnosis and initiating chemotherapy, all three using the same levels in either the serum or CSF These criteria evolved since the 1990s and are (1) β-hCG ≥ 50 IU/L or αFP ≥ 10 ng/mL [4, 5, 10,11,12]; (2) β-hCG ≥ 100 IU/L or αFP ≥ 50 ng/mL [13]; and (3) β-hCG > 50 IU/L or αFP > 25 ng/mL [14]. More appropriate diagnostic criteria should help diagnosing the ICGCTs at an early stage to avoid a delayed diagnosis [15,16,17,18]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.