Abstract
IRF-1, a kind of transcription factor, is expressed in many cell types, except in early embryonal cells. IRF-1 has played an essential role in various physiological and pathological processes, including tumor immune surveillance, viral infection, development of immunity system and pro-inflammatory injury. However, the expression and function of IRF-1 in spinal cord injury (SCI) are still unknown. In this study, we have performed an acute SCI model in adult rats and investigated the dynamic changes of IRF-1 expression in the spinal cord. Western blot have shown that IRF-1 protein levels gradually increased, reaching a peak at day 3 and then gradually declined to a normal level at day 14 after SCI. Double immunofluorescence staining showed that IRF-1 immunoreactivity was found in neurons, but not in astrocytes and microglia. Additionally, colocalization of IRF-1/active caspase-3 was detected in neurons. In vitro, IRF-1 depletion, by short interfering RNA, obviously decreases neuronal apoptosis. In conclusion, this is the first description of IRF-1 expression in spinal cord injury. Our results suggested that IRF-1 might play crucial roles in CNS pathophysiology after SCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.