Abstract

BackgroundShort-chain acyl-CoA dehydrogenase deficiency (SCADD) represents a rare autosomal recessive inborn metabolic disorder of mitochondrial β-oxidation of monocarboxylic acids. Clinical symptoms can vary from a severe life-threatening condition to an asymptomatic state, reported in the majority of cases. Since the expansion of newborn screenings, more than three hundred probands were admitted for molecular-genetic analysis, most selected because of elevated values of C4-acylcarnitine detected in newborn screenings in Slovakia. Searching for the principal genomic changes led us to the selection of sixty-two patients in whom the presence of sequence variants in the ACADS gene was analysed and correlated with the available biochemical and clinical data.MethodsBiochemical and molecular genetic tests were performed. Acylcarnitine profiles focused on an elevated level of C4-acylcarnitine, which was analysed via tandem mass spectrometry. Urinary organic acids, specifically a quantity of ethylmalonic acid, were determined by gas chromatography/mass spectrometry. The entire coding region of the ACADS gene was sequenced. A low-cost restriction fragment length polymorphism of PCR amplified fragments analysis (PCR-RFLP) of pathogenic variants was introduced and implemented for the molecular-genetic algorithm appropriate for the Slovak population.ResultsOur molecular genetic study was performed on sixty-two patients with a pathological biochemical pattern related to short-chain acyl-CoA dehydrogenase deficiency. In this cohort, we discovered a high occurrence of two rare pathogenic variants—the deletion c.310_312delGAG and the substitution c.1138C>T, with allelic frequencies of 64% and 31%, respectively. Up to 86% of investigated individuals belong to the Roma ethnic group.ConclusionsAnalogous to other countries, SCADD is not included in the newborn screening programme. Based on the exceeded levels of the specific biomarker C4-acylcarnitine as well as ethylmalonic acid, we revealed a high prevalence of short-chain acyl-CoA dehydrogenase deficiency cases, confirmed by the findings of two rare pathogenic variants. A deletion c.310_312delGAG and c.1138C > T substitution in the ACADS gene appear with a high frequency in the Roma ethnic group of Slovakia. Due to the uncertainty of the pathogenicity and clinical consequences, it is important to follow up the morbidity and mortality in these patients over time and evaluate SCADD in relation to clinical outcomes and preventive healthcare recommendations.

Highlights

  • Short-chain acyl-CoA dehydrogenase deficiency (SCADD) represents a rare autosomal recessive inborn metabolic disorder of mitochondrial β-oxidation of monocarboxylic acids

  • Based on the exceeded levels of the specific biomarker C4-acylcarnitine as well as ethylmalonic acid, we revealed a high prevalence of short-chain acyl-CoA dehydrogenase deficiency cases, confirmed by the findings of two rare pathogenic variants

  • A deletion c.310_312delGAG and c.1138C > T substitution in the Gene-coding short-chain acyl-CoA dehydrogenase (ACADS) gene appear with a high frequency in the Roma ethnic group of Slovakia

Read more

Summary

Introduction

Short-chain acyl-CoA dehydrogenase deficiency (SCADD) represents a rare autosomal recessive inborn metabolic disorder of mitochondrial β-oxidation of monocarboxylic acids. Short-chain acyl-CoA dehydrogenase deficiency (SCADD, OMIM #201470) is a rare inborn metabolic disorder of mitochondrial β-oxidation with autosomal recessive inheritance. It was first described by Turnbull et al [1] in a patient with lipid storage myopathy and low concentrations of carnitine and soon after by Bennett et al [2] in a patient with defective oxidation of butyrate and hexanoate and excessive excretion of ethylmalonic acid in urine. Based on the available data, clinical presentation can range from the severe infantile form with metabolic acidosis and neurological impairment to an asymptomatic state [4]. According to data acquired from Slovak newborn screenings in 2016, the prevalence of SCADD in Caucasian newborns is 1:9.745, and in Roma newborns, it is very high, with as many as 1:100

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call