Abstract

The variety and wideness of substitutions shown by tourmaline group, mainly in the Ζ, Y and X sites, make possible a high number of real and hypothetical endmembers. However in some cases it is not so obvious to determine to what endmembers to refer to, but the wide stability field of tourmaline and its occurrence in different geological environments make useful to define the composition as percentages of end-members to trace back to its genesis. In this paper the followed procedure to identify the components of a complex tourmaline is given. During a study on the granitoid intrusions outcropping on Sithonia, Chalkidiki Peninsula (Northern Greece), a swarm of very small crystals of tourmaline, subhedral or more often allotriomorphic, has been found as stuffing of subparallel micro fractures in the quartz core of a pegmatite dike. Their composition, analysed by EMPA, turns out to be rather unusual and not satisfactorily referable to so far proposed solid solutions. It is characterized by remarkable Al deficiency (ZAl < 6 apfu), high amounts of magnesium and iron with Mg > Fe and Να dominating X site. On the basis of compositional and crystal-chemical evidences, supported by previous literature, it was hypothesized that Mg and Fe have to be referred to an uvite — feruvite component, while the considerable part of total iron in its trivalent oxidation state yields a povondraitic component according also with Na in X site. These data, coupled with a theoretical evaluation of bond valence sum (B VS) that allowed inferring the presence of OFT anions in the W site, make reasonable to consider Sithonia tourmaline as the new variety sodian povondraitic hydroxil uviteferuvite. On the basis of its composition, of its fabric and of the oscillatory trends shown by the main elements of Y and X sites, this tourmaline may be considered post magmatic likely of hydrothermal genesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call