Abstract

Flatfishes (Pleuronectiformes) exhibit different types of large-scale gene rearrangements. In the present study, the mitochondrial (mt) genome (18,369bp) of a tonguefish, Cynoglossus trigrammus, was determined using de novo mitochondrion genome sequencing. Compared with other flatfishes, the mt genome of C. trigrammus revealed distinct mitogenome architectures that primarily included two striking findings: 1) insertion of an additional long non-coding region (1647bp) making it the second largest genome length among Pleuronectiformes and 2) the translocation of the control region. The reconstructed phylogenetic tree based on 13 mt protein-coding gene sequences recovered the monophyletic suborder Pleuronectoidei and the family Cynoglossidae. These data provide useful information for a better understanding of the mitogenomic diversities and evolution in fish as well as novel genetic markers for studying population genetics and species identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.