Abstract

Stability and bifurcation for the unsymmetrical, periodic motion of a horizontal impact oscillator under a periodic excitation are investigated through four mappings based on two switch-planes relative to discontinuities. Period-doubling bifurcation for unsymmetrical period-1 motions instead of symmetrical period-1 motion is observed. A numerical investigation for symmetrical, period-1 motion to chaos is completed. The numerical and analytical results of periodic motions are in very good agreement. The methodology presented in this paper is applicable to other discontinuous dynamic systems. This investigation also provides a better understanding of such an unsymmetrical motion in symmetrical discontinuous systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.