Abstract
An unsupervised segmentation method for synthetic aperture radar (SAR) images is proposed. It alternately approximates the maximization of the posterior marginals estimate of the pixel class labels and estimates all model parameters except the number of classes during segmentation. In this method, a multilevel logistic (MLL) model for the pixel class labels and Gamma distribution for the marginal distribution of each class in the observed SAR image are employed. In our implementation, the expectation-maximization algorithm is used to estimate parameters of the Gamma distributions, and the iterative conditional estimation algorithm is used to estimate the MLL model parameters. The segmentation results for synthetic and real SAR images show that the proposed method has a good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.