Abstract

SAR data provide sufficient information for burned area detection in any weather condition, making it superior to optical data. In this study, we assess the potential of Sentinel-1 SAR images for precise forest-burned area mapping using deep convolutional neural networks (DCNN). Accurate mapping with DCNN techniques requires high quantity and quality training data. However, labeled ground truth might not be available in many cases or requires professional expertise to generate them via visual interpretation of aerial photography or field visits. To overcome this problem, we proposed an unsupervised method that derives DCNN training data from fuzzy c-means (FCM) clusters with the highest and lowest probability of being burned. Furthermore, a saliency-guided (SG) approach was deployed to reduce false detections and SAR image speckles. This method defines salient regions with a high probability of being burned. These regions are not affected by noise and can improve the model performance. The developed approach based on the SG-FCM-DCNN model was investigated to map the burned area of Rossomanno-Grottascura-Bellia, Italy. This method significantly improved the burn detection ability of non-saliency-guided models. Moreover, the proposed model achieved superior accuracy of 87.67% (i.e., more than 2% improvement) compared to other saliency-guided techniques, including SVM and DNN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.