Abstract
As people get older, living at home can expose them to potentially dangerous situations when performing everyday actions or simple tasks due to physical, sensory or cognitive limitations. This could compromise the residents’ health, a risk that in many cases could be reduced by early detection of the incidents. The present work focuses on the development of a system capable of detecting in real time the main activities of daily life that one or several people can perform at the same time inside their home. The proposed approach corresponds to an unsupervised learning method, which has a number of advantages, such as facilitating future replication or improving control and knowledge of the internal workings of the system. The final objective of this system is to facilitate the implementation of this method in a larger number of homes. The system is able to analyse the events provided by a network of non-intrusive sensors and the locations of the residents inside the home through a Bluetooth beacon network. The method is built upon an accurate combination of two hidden Markov models: one providing the rooms in which the residents are located and the other providing the activity the residents are carrying out. The method has been tested with the data provided by the public database SDHAR-HOME, providing accuracy results ranging from 86.78% to 91.68%. The approach presents an improvement over existing unsupervised learning methods as it is replicable for multiple users at the same time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.