Abstract

Emerging multi-electrode-based brain-machine interfaces (BMIs) and large multi-electrode arrays used in in vitro experiments, enable recording of single neuron's activity on multiple electrodes and allow for an in-depth investigation of neural preparations, even at a sub-cellular level. However, the use of these devices entails stringent area and power consumption constraints for the signal-processing hardware units. In addition, the high autonomy of these units and an ability to automatically adapt to changes in the recorded neural preparations is required. Implementing spike detection in close proximity to recording electrodes offers the advantage of reducing the transmission data bandwidth. By eliminating the need of transmitting the full, redundant recordings of neural activity and by transmitting only the spike waveforms or spike times, significant power savings can be achieved in the majority of cases. Here, we present a low-complexity, unsupervised, adaptable, real-time spike-detection method targeting multi-electrode recording devices and compare this method to other spike-detection methods with regard to complexity and performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call