Abstract

SUMMARY The simultaneous source data obtained by simultaneous source acquisition contain crosstalk noise and cannot be directly used in conventional data processing procedures. Therefore, it is necessary to deblend the blended wavefield to obtain the conventionally acquired single-shot recordings. In this study, we propose an iterative inversion method based on the unsupervised deep neural network (UDNN) to deblend the simultaneous source data from a denser shot coverage survey (DSCS). In the common receiver gather (CRG), the coherent effective signals in the blended data of the primary and secondary sources are similar. We exploit the excellent nonlinear optimization capability of the U-net network to extract similar coherent signals from the blended data of the primary and secondary sources by minimizing the total loss function. The proposed UDNN method does not need to use the raw unblended data as label data, which solves the problem of missing label data and is suitable for deblending the simultaneous source data in different work areas with complex underground structures. One synthetic data and one field data examples are used to prove that the proposed method can suppress crosstalk noise and protect weak effective signals effectively, and achieve good effectiveness for the separation of simultaneous source data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call