Abstract

This paper focuses on the development of medical software for clinical applications using advanced image processing algorithms. Three critical issues of hair segmentation and counting are addressed in this paper. First, the removal of any bright spots due to oil or moisture, which generate circular patterns in the middle of the hair and significantly affect the accuracy of determining the line. Second, two contacting or overlapping hairs are recognized and counted as a single hair. To solve this problem, we proposed a hair-bundling algorithm to calculate any concealed hairs. Finally, hairs may be wavy or curly, making the conventional Hough-based line detection algorithm unsuitable, since it suffers from parameter selections, such as the minimum length of line segment, and distance between line segments. Our proposed hair counting algorithm is substantially more accurate than the Hough-based one, and robust to curls, oily scalp, noise-corruption, and overlapping hairs, under various white balance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.