Abstract
The paper addresses the problem of automatic detection of basal cell carcinoma (BCC) in histopathology images. In particular, it proposes a framework to both, learn the image representation in an unsupervised way and visualize discriminative features supported by the learned model. This paper presents an integrated unsupervised feature learning (UFL) framework for histopathology image analysis that comprises three main stages: (1) local (patch) representation learning using different strategies (sparse autoencoders, reconstruct independent component analysis and topographic independent component analysis (TICA), (2) global (image) representation learning using a bag-of-features representation or a convolutional neural network, and (3) a visual interpretation layer to highlight the most discriminant regions detected by the model. The integrated unsupervised feature learning framework was exhaustively evaluated in a histopathology image dataset for BCC diagnosis. The experimental evaluation produced a classification performance of 98.1%, in terms of the area under receiver-operating-characteristic curve, for the proposed framework outperforming by 7% the state-of-the-art discrete cosine transform patch-based representation. The proposed UFL-representation-based approach outperforms state-of-the-art methods for BCC detection. Thanks to its visual interpretation layer, the method is able to highlight discriminative tissue regions providing a better diagnosis support. Among the different UFL strategies tested, TICA-learned features exhibited the best performance thanks to its ability to capture low-level invariances, which are inherent to the nature of the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.