Abstract

ABSTRACT The probability of a single access point (AP) failure is very small. In addition, APs communicate with each other; therefore, it is considered that these failures have little impact on the wireless network. Only when a large number of APs are abnormal offline, do we consider that the wireless network is faulty and needs to be recovered immediately. Network breakdown, network congestion, and AP management software shutdown may cause numerous APs in aborted status. In this article, we utilize DBSCAN algorithm to detect abnormal Wi-Fi APs. Compared with other research works, our proposed unsupervised method can distinguish between normal and abnormal offline APs. This study proposes a new date dimension to calculate the number of online APs together with the time dimension, and it provides new insights to set up thresholds of online APs automatically. Experimental results show that this 3-D model based on date and time is more accurate than the traditional 2-D model only based on time. With regard to the sampling method of random forest, this paper carries out repetitive random sampling to form small sample sets and finally to obtain the mean feature plane, which can reduce the interference of abnormal points to our algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.