Abstract
Objective. Intravoxel incoherent motion (IVIM) imaging obtained by fitting a biexponential model to multiple b-value diffusion-weighted magnetic resonance imaging (DW-MRI) has been shown to be a promising tool for different clinical applications. Recently, several deep neural network (DNN) methods were proposed to generate IVIM imaging. Approach. In this study, we proposed an unsupervised convolutional neural network (CNN) method for estimation of IVIM parameters. We used both simulated and real abdominal DW-MRI data to evaluate the performance of the proposed CNN-based method, and compared the results with those obtained from a non-linear least-squares fit (TRR, trust-region reflective algorithm) and a feed-forward backward-propagation DNN-based method. Main results. The simulation results showed that both the DNN- and CNN-based methods had lower coefficients of variation than the TRR method, but the CNN-based method provided more accurate parameter estimates. The results obtained from real DW-MRI data showed that the TRR method produced many biased IVIM parameter estimates that hit the upper and lower parameter bounds. In contrast, both the DNN- and CNN-based methods yielded less biased IVIM parameter estimates. Overall, the perfusion fraction and diffusion coefficient obtained from the DNN- and CNN-based methods were close to literature values. However, compared with the CNN-based method, both the TRR and DNN-based methods tended to yield increased pseudodiffusion coefficients (55%–180%). Significance. Our preliminary results suggest that it is feasible to estimate IVIM parameters using CNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.