Abstract
In this paper, the proposed Unsupervised Mahalanobis Distance Classifier (UNMDC) scheme is a multi-class unsupervised classifier with the basic philosophy of supervised Mahalanobis?Taguchi System (MTS) based monitoring procedure. A comparative study between the MTS and the proposed UNMDC is performed with various simulated experiments for different types of correlation structure and location parameters, published data and real-life data sets of different sizes and dimensions. The advantages of domain knowledge independent thresholds, multi-class separation, identifying process shifts during multivariate process-monitoring and feature selection in case of detection of abnormals are the special merits of this algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Industrial and Systems Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.