Abstract

A new method in computational intelligence namely artificial immune systems (AIS), which draw inspiration from the vertebrate immune system, have strong capabilities of pattern recognition. Even though AIS have been successfully utilized in several fields, few applications have been reported in remote sensing. Modern commercial imaging satellites, owing to their large volume of high-resolution imagery, offer greater opportunities for automated image analysis. Hence, we propose a novel unsupervised machine-learning algorithm namely unsupervised artificial immune classifier (UAIC) to perform remote sensing image classification. In addition to their nonlinear classification properties, UAIC possesses biological properties such as clonal selection, immune network, and immune memory. The implementation of UAIC comprises two steps: initially, the first clustering centers are acquired by randomly choosing from the input remote sensing image. Then, the classification task is carried out. This assigns each pixel to the class that maximizes stimulation between the antigen and the antibody. Subsequently, based on the class, the antibody population is evolved and the memory cell pool is updated by immune algorithms until the stopping criterion is met. The classification results are evaluated by comparing with four known algorithms: K-means, ISODATA, fuzzy K-means, and self-organizing map. It is shown that UAIC is an adaptive clustering algorithm, which outperforms other algorithms in all the three experiments we carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call