Abstract
Mobile context modeling is a process of recognizing and reasoning about contexts and situations in a mobile environment, which is critical for the success of context-aware mobile services. While there are prior works on mobile context modeling, the use of unsupervised learning techniques for mobile context modeling is still under-explored. Indeed, unsupervised techniques have the ability to learn personalized contexts, which are difficult to be predefined. To that end, in this paper, we propose an unsupervised approach to modeling personalized contexts of mobile users. Along this line, we first segment the raw context data sequences of mobile users into context sessions where a context session contains a group of adjacent context records which are mutually similar and usually reflect the similar contexts. Then, we exploit two methods for mining personalized contexts from context sessions. The first method is to cluster context sessions and then to extract the frequent contextual feature-value pairs from context session clusters as contexts. The second method leverages topic models to learn personalized contexts in the form of probabilistic distributions of raw context data from the context sessions. Finally, experimental results on real-world data show that the proposed approach is efficient and effective for mining personalized contexts of mobile users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.