Abstract

An unstructured high-resolution, node-centered finite volume algorithm for triangular grids is developed in order to simulate unsteady, two-dimensional, shallow water flows over arbitrary topography with wetting and drying. The algorithm utilizes Roe’s approximate Riemann solver, to compute the numerical fluxes, while second-order spatial accuracy is achieved with a MUSCL reconstruction technique, using a slope limiter to control the total variation of the reconstructed field, and an explicit four stage Runge–Kutta time stepping. The novel aspects of the algorithm include the extension to second-order of the topography source term treatment and the wet/dry front treatment, using the MUSCL slope limiting method, within the node-centered finite volume formulation. The developed wet/dry treatment is found to ensure absolute mass conservation. At the beginning of the procedure a triangular grid is locally refined (performing h-enrichment) at regions with steep variations of the topography in order to obtain a better approximation of irregular terrain characteristics and improve the accuracy of the results in the flow for those regions in which a more complex flow is associated to more abrupt geometry without an excess in computational cost. The proposed numerical scheme is extensively validated, with respect to its effectiveness and robustness, against benchmark test cases and experimental data related to propagation and run-up of long waves over arbitrary topographies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.