Abstract

A lifting-line theory is developed for wings of large aspect ratio undergoing time-harmonic oscillations, uniformly from high to low frequencies. The method of matched asymptotic expansions is used to enforce the compatibility of two approximate solutions valid far from and near the wing surface. The far-field velocity potential is expressed as a distribution of normal dipoles on the wake, and its expansion near the wing span leads to an expression for the oscillatory downwash. The near-field flow is two-dimensional. A particular solution is obtained from strip theory and a homogeneous component is added to account for the spanwise hydrodynamic interactions. The compatibility of the inner and outer solutions leads to an integral equation for the distribution of circulation along the wing span. In the zero-frequency limit it reduces to that in Prandtl's lifting-line theory, and for high frequencies it tends to the two-dimensional strip theory. Lift computations are presented for an elliptic and a rectangular wing of aspect ratio A = 4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call