Abstract

A unique member of the family of cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes, OxsB, catalyzes the ring constriction of deoxyadenosine triphosphate (dATP) to the base oxetane aldehyde phosphate, a crucial precursor for oxetanocin A (OXT-A), which is an antitumor, antiviral, and antibacterial compound. This enzyme reveals a new catalytic function for this big family that is different from the common methylation. On the basis of density functional theory calculations, a mechanism has been proposed to mainly include that the generation of 5'-deoxyadenosine radical, a hydrogen transfer forming 2'-dATP radical, and a Cbl-catalyzed ring contraction of the deoxyribose in 2'-dATP radical. The ring contraction is a concerted rearrangement step accompanied by an electron transfer from the deoxyribose hydroxyl oxygen to CoIII without any ring-opening intermediate. CoIICbl has been ruled out as an active state. Other mechanistic characteristics are also revealed. This unprecedented non-methylation mechanism provides a new catalytic repertoire for the family of radical SAM enzymes, representing a new class of ring-contraction enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call