Abstract

ABSTRACTIn recent years, there has been a growing interest in the use of fault analysis techniques in unmanned marine vehicles (UMVs) owing to their significant impact on marine operations. This study presents a novel approach to the diagnosis of unbalanced load (blades damage) faults in an electric thruster motor in UMV propulsion systems based on orthogonal fuzzy neighbourhood discriminative analysis for feature dimensionality reduction. The diagnosis approach is based on the use of discrete wavelet transforms as a feature extraction tool and the optimal number of mother wavelet function and levels of resolution by analysing the vibration and current signals. As a result of analysis and comparisons, the Deubechies 12 (db12) wavelet and level 8 were chosen. A dynamic recurrent neural network was chosen for fault classification and level of fault severity prediction was implemented. Four faulty conditions were analysed under laboratory conditions and these were recreated by damaging the blades of a motor. The results obtained from the simulation demonstrate the effectiveness and reliability of the proposed methodology in classifying the different faults with greater speed and accuracy compared to existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.