Abstract

Thyroid-stimulating hormone (TSH)-secreting tumors (TSH-omas) are pituitary tumors that constitutively secrete TSH. The molecular genetics underlying this abnormality are not known. We discovered that a knock-in mouse harboring a mutated thyroid hormone receptor (TR) beta (PV; TRbeta(PV/PV) mouse) spontaneously developed TSH-omas. TRbeta(PV/PV) mice lost the negative feedback regulation with highly elevated TSH levels associated with increased thyroid hormone levels (3,3',5-triiodo-l-thyronine [T3]). Remarkably, we found that mice deficient in all TRs (TRalpha1(-/-) TRbeta(-/-)) had similarly increased T3 and TSH levels, but no discernible TSH-omas, indicating that the dysregulation of the pituitary-thyroid axis alone is not sufficient to induce TSH-omas. Comparison of gene expression profiles by cDNA microarrays identified overexpression of cyclin D1 mRNA in TRbeta(PV/PV) but not in TRalpha1(-/-) TRbeta(-/-) mice. Overexpression of cyclin D1 protein led to activation of the cyclin D1/cyclin-dependent kinase/retinoblastoma protein/E2F pathway only in TRbeta(PV/PV) mice. The liganded TRbeta repressed cyclin D1 expression via tethering to the cyclin D1 promoter through binding to the cyclic AMP response element-binding protein. That repression effect was lost in mutant PV, thereby resulting in constitutive activation of cyclin D1 in TRbeta(PV/PV) mice. The present study revealed a novel molecular mechanism by which an unliganded TRbeta mutant acts to contribute to pituitary tumorigenesis in vivo and provided mechanistic insights into the understanding of pathogenesis of TSH-omas in patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.