Abstract

Abstract A new universal electron transport layer that involves doping hydrogen-plasma-treated tungsten disulfide (WS2) nanosheets into ZnO for polymer/fullerene or small molecule organic photovoltaics (OPVs) was prepared. A hydrogen plasma treatment was used to alter the structures of WS2 nanosheets such that the W6+ content was converted into W4+; then ZnO:WS2 nanosheets composites were prepared to form electron transport layers (ETLs). The energy band of the ZnO:WS2 films could be tuned from 5.15 to 4.60 eV by varying the concentration of the WS2 nanosheets up to 0.5 wt%. It was found that ZnO:WS2 ETLs exhibited superior charge transport properties than those of the pristine ZnO layer because of the structure changes, as determined from the X-ray scattering characterizations. OPVs incorporating active layers of PTB7-TH/PC71BM and PTB7-TH/IDIC blends exhibited their power conversion efficiencies of 10.3% and 6.7%, respectively, with the incorporation of 0.3 wt% of the WS2 nanosheets, up from 8.9% to 5.4% for the corresponding devices featuring pristine ZnO—relative increases of 16% and 24%, respectively. This study demonstrates the effectiveness of hydrogen plasma treatment for altering the surface structures of two-dimensional transition-metal-dichalcogenide nanosheets, and paves a way for the composite electron transport layers for use in organic photovoltaics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.