Abstract

Bile salts such as cholate are surface-active steroid compounds with functions for digestion and signaling in vertebrates. Upon excretion into soil and water bile salts are an electron- and carbon-rich growth substrate for environmental bacteria. Degradation of bile salts proceeds via intermediates with a 3-keto-Δ1,4 -diene structure of the steroid skeleton as shown for e.g. Pseudomonas spp. Recently, we isolated bacteria degrading cholate via intermediates with a 3-keto-7-deoxy-Δ4,6 -structure of the steroid skeleton suggesting the existence of a second pathway for cholate degradation. This potential new pathway was investigated with Novosphingobium sp. strain Chol11. A 7α-hydroxysteroid dehydratase encoded by hsh2 was identified, which was required for the formation of 3-keto-7-deoxy-Δ4,6 -metabolites. A hsh2 deletion mutant could still grow with cholate but showed impaired growth. Cholate degradation of this mutant proceeded via 3-keto-Δ1,4 -diene metabolites. Heterologous expression of Hsh2 in the bile salt-degrading Pseudomonas sp. strain Chol1 led to the formation of a dead-end steroid with a 3-keto-7-deoxy-Δ4,6 -diene structure. Hsh2 is the first steroid dehydratase with an important function in a metabolic pathway of bacteria that use bile salts as growth substrates. This pathway contributes to a broad metabolic repertoire of Novosphingobium strain Chol11 that may be advantageous in competition with other bile salt-degrading bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.