Abstract
This study investigates the adsorption properties of methylidyne (CH) on Rh{111}, its partial and full oxidation as well as its surface mobility, by means of plane-wave density functional theory (DFT) calculations. Besides investigating known oxidation pathways on rhodium, such as decomposition of CH and subsequent oxidation of the decomposition products, new pathways such as direct reaction of methylidyne and oxygen toward a surface aldyhyde-type species and the decomposition of this species are considered. The unexpected and novel pathway determined here by DFT is utilized for a microkinetic model of the formation of CO and CO2 from methylidyne. A comparison of this microkinetic study with experimental data shows that our novel mechanism can indeed describe the observations. This comparison strongly suggests that this new alternative route is the main reaction pathway for the conversion of methylidyne.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.