Abstract
In this work, we propose a 3D dynamic optimization model that enables the design of an underground mine ore pass system with uncertainties. Ore transportation costs and ore pass development costs are quantified by triangular fuzzy numbers. Transportation costs are treated as production costs, and they vary over the duration of mining operation, while development costs of ore passes are treated as an investment, and they are treated as constant. The developed model belongs to the class of fuzzy 0–1 linear programming models, where the fuzzy objective cost function achieves a minimum value, with respect to given set of techno-dynamic constraints. Searching for optimal value in the fuzzy environment is a hard task, and because of that, we developed a new ranking function which transforms the fuzzy optimization model into a crisp one. A triangular fuzzy number can be presented as a triangular graph G(V,E) composed of vertices and edges. The x-coordinate of the Torricelli point of a triangular graph presents the crisp value of a triangular fuzzy number. The use of this model lets us know the optimal number of ore passes, optimal location of ore passes, and optimal dynamic ore transportation plan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.