Abstract

The present paper describes measurements of ion implantation by high-intensity lasers in an innovative configuration. The ion acceleration and implantation were performed using the target normal sheath acceleration regime. Highly ionized charged ions were generated and accelerated by the self-consistent electrostatic accelerating field at the rear side of a directly illuminated foil surface. A sub-nanosecond pulsed laser operating at an intensity of about 1016 W cm−2 was employed to irradiate thin foils containing Au atoms. Multi-energy and multi-species ions with energies of the order of 1 MeV per charge state were implanted on exposed substrates of monocrystalline silicon up to a concentration of about 1% Au atoms in the first superficial layers.The target, laser parameters and irradiation conditions play a decisive role in the dynamic control of the characteristics of the ion beams to be implanted. The ion penetration depth, the depth profile, the integral amount of implanted ions and the concentration–depth profiles were determined by Rutherford back-scattering analysis. Ion implantation produces Si nanocrystals and Au nanoparticles and induces physical and chemical modifications of the implanted surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call