Abstract

This paper proposes an extension of the unconditionally stable finite-element time-domain (FETD) method for the global electromagnetic analysis of active microwave circuits. This formulation has two advantages. First, the time-step size is no longer governed by the spatial discretization of the mesh, but rather by the Nyquist sampling criterion. Second, the implementation of the truncation by the perfectly matched layers (PML) is straightforward. An anisotropic PML absorbing material is presented for the truncation of FETD lattices. Reflection less than -50 dB is obtained numerically over the entire propagation bandwidth in waveguide and microstrip line. A benchmark test on a microwave amplifier indicates that this extended FETD algorithm is not only superior to finite-difference time-domain-based algorithm in mesh flexibility and simulation accuracy, but also reduces computation time dramatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.