Abstract

An unconditional existence result of a solution for a steady fluid-structure problem is stated. More precisely, we consider an incompressible fluid in a thin film, ruled by the Reynolds equation coupled with a surface deformation modelled by a nonlinear non local Hertz law. The viscosity is supposed to depend nonlinearly on the fluid pressure. Due to the apparition of a mushy region, the two-phase flow satisfies a free boundary problem defined by a pressure-saturation model. Such a problem has been studied with simpler free boundaries models (variational inequality), or with boundary conditions imposing small data assumptions. We show that up to a realistic hypothesis on the asymptotic pressure-viscosity behaviour it is possible to obtain an unconditional solution of the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.