Abstract
This paper presents an uncertainty-set-shrinkage (USS) algorithm that aims to reconstruct a precise interference-plus-noise covariance matrix (INCM) and improve the performance of adaptive beamformers when steering vector (SV) mismatch exists. Both of the interference covariance matrix (ICM) and the desired signal covariance matrix (DSCM) can be divided into two parts, namely the nominal matrix reconstructed using the nominal SVs and the error matrix consisting of the residual component of the covariance matrix. By using a two-step uncertainty set shrinkage method, the proposed beamformer constructs the error matrices by integrating the estimated spatial spectrum over the shrinked uncertainty set at a cost of low computational complexity. After extracting the principal component of the reconstructed ICM and DSCM, the INCM and the SV of the source of interest (SOI) can be estimated without solving any optimization problem. Both of numerical simulations and experimental results demonstrate that the performance of the proposed algorithm is robust with several categories of SV mismatches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.