Abstract

Fault models are often based on interpretations of seismic data that are constrained by observations of faults and associated strata in wells. Because of uncertainties in depth migration, seismic interpretations and well data, there often is significant uncertainty in the geometry and position of the faults. Fault uncertainty impacts determinations of reservoir volume, flow properties and well planning. Stochastic simulation of the faults is important for quantifying the uncertainties and minimizing the impacts. In this paper, a framework for representing and modeling uncertainty in fault location and geometry is presented. This framework can be used for prediction and stochastic simulation of fault surfaces, visualization of fault location uncertainty, and assessments of the sensitivity of fault location on reservoir performance. The uncertainty in fault location is represented by a fault uncertainty envelope and a marginal probability distribution. To be able to use standard geostatistical methods, quantile mapping is employed to construct a transformation from the fault surface domain to a transformed domain. Well conditioning is undertaken in the transformed domain using kriging or conditional simulations. The final fault surface is obtained by transforming back to the fault surface domain. Fault location uncertainty can be visualized by transforming the surfaces associated with a given quantile back to the fault surface domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.