Abstract
Political scientists often consider multiple empirical models of the same process. When these models are parametric and non-nested, the null hypothesis that two models fit the data equally well is commonly tested using methods introduced by Vuong (1989) and Clarke (2003, 2007). The objective of each is to compare the Kullback-Leibler Divergence (KLD) of the two models from the true model that generated the data. In this research note we show that both of these tests are based upon a biased estimator of the KLD, the individual log-likelihood contributions, and that the Clarke test is not proven to be consistent for the difference in KLDs. As a solution, we derive a test based upon cross-validated log-likelihood contributions, which represent an unbiased KLD estimate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: SSRN Electronic Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.