Abstract
Few-shot fine-grained image classification (FSFGIC) aims to classify subspecies with similar appearances under conditions of very limited data. In this paper, we observe an interesting phenomenon: different types of image data augmentation techniques have varying effects on the performance of FSFGIC methods. This indicates that there may be biases in the features extracted from the input images. The bias of the acquired feature may cause deviation in the calculation of similarity, which is particularly detrimental to FSFGIC tasks characterized by low inter-class variation and high intra-class variation, thus affecting the classification accuracy. To address the problems mentioned, we propose an unbiased feature estimation network. The designed network has the capability to significantly optimize the quality of the obtained feature representations and effectively reduce the feature bias from input images. Furthermore, our proposed architecture can be easily integrated into any contextual training mechanism. Extensive experiments on the FSFGIC tasks demonstrate the effectiveness of the proposed algorithm, showing a notable improvement in classification accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.