Abstract

Anti-interference and high-precision measurement are two important indicators of the performance of a satellite navigation receiver. However, current receiver designs do not simultaneously satisfy these two criteria. While the carrier-phase ranging technique is necessary for high-precision receivers, frequency domain interference suppression (FDIS) results in tracking error biases for nonideal analog receiver channels. Importantly, as the FDIS filter is adaptive, the bias will vary with the jamming pattern, particularly when the frequency of interference varies. For precision navigation applications, this bias must be mitigated. Therefore, a new FDIS filter based on the mirror frequency amplitude compensation (MFAC) method is proposed in this paper. The amplitude at the symmetry position of the notch frequency is doubled in the MFAC method to mitigate this carrier-phase bias. The simulation results showed that the MFAC method can reduce the range of the carrier-phase bias by more than 60% for different interference bandwidths, which substantially exceeds that achieved using the conventional FDIS and calibration filter methods of 20 orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.